Convex sublattices of a lattice and a fixed point property

نویسندگان

  • Dwight Duffus
  • Claude Laflamme
  • Maurice Pouzet
  • Robert E. Woodrow
چکیده

The collection CL(T ) of nonempty convex sublattices of a lattice T ordered by bi-domination is a lattice. We say that T has the fixed point property for convex sublattices (CLFPP for short) if every order preserving map f ∶ T → CL(T ) has a fixed point, that is x ∈ f(x) for some x ∈ T . We examine which lattices may have CLFPP. We introduce the selection property for convex sublattices (CLSP); we observe that a complete lattice with CLSP must have CLFPP, and that this property implies that CL(T ) is complete. We show that for a lattice T , the fact that CL(T ) is complete is equivalent to the fact that T is complete and the lattice �(ω) of all subsets of a countable set, ordered by containment, is not order embeddable into T . We show that for the lattice T ∶= I(P ) of initial segments of a poset P , the implications above are equivalences and that these properties are equivalent to the fact that P has no infinite antichain. A crucial part of this proof is a straightforward application of a wonderful Hausdorff type result due to Abraham, Bonnet, Cummings, Džamondja and Thompson 2010 [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonexpansive mappings on complex C*-algebras and their fixed points

A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...

متن کامل

A convex combinatorial property of compact sets in the plane and its roots in lattice theory

K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...

متن کامل

Characterization of weak fixed point property for new class of set-valued nonexpansive mappings

In this paper, we introduce a new class of set-valued mappings which is called MD-type mappings. This class of mappings is a set-valued case of a class of the D-type mappings. The class of D-type mappings is a generalization of nonexpansive mappings that recently introduced by Kaewkhao and Sokhuma. The class of MD-type mappings includes upper semi-continuous Suzuki type mappings, upper semi-con...

متن کامل

Existence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials 

Introduction Let  be a nonempty subset of a normed linear space . A self-mapping  is said to be nonexpansive provided that  for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...

متن کامل

EMBEDDING OF THE LATTICE OF IDEALS OF A RING INTO ITS LATTICE OF FUZZY IDEALS

We show that the lattice of all ideals of a ring $R$ can be embedded in the lattice of all its fuzzyideals in uncountably many ways. For this purpose, we introduce the concept of the generalizedcharacteristic function $chi _{s}^{r} (A)$ of a subset $A$ of a ring $R$ forfixed $r , sin [0,1] $ and show that $A$ is an ideal of $R$ if, and only if, its generalizedcharacteristic function $chi _{s}^{...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Contributions to Discrete Mathematics

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013